Scientists Solve a 40-Year Quantum Mystery That Could Change Electronics Forever

Researchers have confirmed “quantum scars,” patterns formed by confined electrons, using advanced graphene imaging. These findings could enhance electronics efficiency and inform new quantum control techniques. Credit: SciTechDaily.com
Researchers have confirmed “quantum scars,” patterns formed by confined electrons, using advanced graphene imaging. These findings could enhance electronics efficiency and inform new quantum control techniques. Credit: SciTechDaily.com

 Quantum chaos, previously theoretical, has been observed experimentally, validating a 40-year-old theory about electrons forming patterns in confined spaces.

Using advanced imaging techniques on graphene, researchers confirmed “quantum scars,” where electrons follow unique closed orbits. These findings could revolutionize electronics by enabling efficient, low-power transistors and paving the way for novel quantum control methods. This discovery offers insights into chaotic quantum systems, bridging a gap between classical and quantum physics, scitechdaily.com.

Patterns in Chaos Revealed in Quantum Space

Where can patterns emerge from chaos? This question has been answered in the incredibly tiny quantum realm by an international research team co-led by UC Santa Cruz physicist Jairo Velasco, Jr. In a study published on November 27 in Nature, the researchers confirmed a 40-year-old theory suggesting that electrons confined within quantum spaces follow predictable paths rather than creating a random jumble of trajectories.

Electrons are unique because they exhibit both particle and wave-like properties. Unlike a ball rolling predictably, their behavior is often counterintuitive. Under specific conditions, the wave-like nature of electrons can cause interference, concentrating their movement into distinct patterns. Physicists refer to these common paths as “unique closed orbits.”

The pattern of quantum scars captured in the lab of physics professor Jairo Velasco, Jr. Credit: Velasco Lab
The pattern of quantum scars captured in the lab of physics professor Jairo Velasco, Jr. Credit: Velasco Lab

Advanced Imaging Techniques in Quantum Research

Achieving this in Velasco’s lab required an intricate combination of advanced imaging techniques and precise control over electron behavior within graphene, a material widely used in research because its unique properties and two-dimensional structure make it ideal for observing quantum effects. In their experiment, Velasco’s team utilized the finely tipped probe of a scanning tunneling microscope to first create a trap for electrons, and then hover close to a graphene surface to detect electron movements without physically disturbing them.

The benefit of electrons following closed orbits within a confined space is that the subatomic particle’s property would be better preserved as it moves from one point to another, according to Velasco. He said this has vast implications for everyday electronics, explaining how information encoded in an electron’s properties could be transferred without loss, conceivably resulting in lower-power, highly efficient transistors.

“One of the most promising aspects of this discovery is its potential use in information processing,” Velasco said. “By slightly disturbing, or ‘nudging’ these orbits, electrons could travel predictably across a device, carrying information from one end to the other.”


A numerical simulation of the quantum dynamics accomplished in the team’s experiment. Credit: Anton Graf, Harvard University

Quantum Scars Make Their Mark

In physics, these unique electron orbits are known as “quantum scars.” This was first explained in a 1984 theoretical study by Harvard University physicist Eric Heller, who used computer simulations to reveal that confined electrons would move along high-density orbits if reinforced by their wave motions interfering with each other.

“Quantum scarring is not a curiosity. But rather, it is a window onto the strange quantum world,” said Heller, also a co-author on the paper. “Scarring is a localization around orbits that come back on themselves. These returns have no long-term consequence in our normal classical world—they are soon forgotten. But they are remembered forever in the quantum world.”

Harnessing Quantum Chaos

With Heller’s theory proven, researchers now have the empirical foundation needed to explore potential applications. Today’s transistors, already at the nanoelectronic scale, could become even more efficient by incorporating quantum scar-based designs, enhancing devices like computers, smartphones, and tablets, which rely on densely packed transistors to boost processing power.

“For future studies, we plan to build on our visualization of quantum scars to develop methods to harness and manipulate scar states,” Velasco said. “The harnessing of chaotic quantum phenomena could enable novel methods for selective and flexible delivery of electrons at the nanoscale—thus, innovating new modes of quantum control.”

Classical Chaos vs. Quantum Chaos

Velasco’s team employs a visual model often referred to as a “billiard” to illustrate the classical mechanics of linear versus chaotic systems. A billiard is a bounded area that reveals how particles inside move, and a common shape used in physics is called a “stadium,” where the ends are curved and the edges straight. In classical chaos, a particle would bounce around randomly and unpredictably—eventually covering the entire surface.

In this experiment, the team created a stadium billiard on atom-thin graphene that measured roughly 400 nanometers in length. Then, with the scanning tunneling microscope, they were able to observe quantum chaos in action: finally seeing with their own eyes the pattern of electron orbits within the stadium billiard they created in Velasco’s lab.

“I am very excited we successfully imaged quantum scars in a real quantum system,” said first and co-corresponding author Zhehao Ge, a UC Santa Cruz graduate student at the time of this study’s completion. “Hopefully, these studies will help us gain a deeper understanding of chaotic quantum systems.”

Reference: “Direct visualization of relativistic quantum scars in graphene quantum dots” by Zhehao Ge, Anton M. Graf, Joonas Keski-Rahkonen, Sergey Slizovskiy, Peter Polizogopoulos, Takashi Taniguchi, Kenji Watanabe, Ryan Van Haren, David Lederman, Vladimir I. Fal’ko, Eric J. Heller and Jairo Velasco Jr, 27 November 2024, Nature.

DOI: 10.1038/s41586-024-08190-6

Коментарі

Популярні дописи з цього блогу

У Нікополі відбулася онлайн-олімпіада з географії серед школярів: результати

Історія про те, як був знайдений золотий гребінь скіфів

На додачу до тисячі: Зеленський анонсував "зимовий пакет підтримки" українців

Що насправді означає слово нівроку в українській мові: пояснення значення та використання

Велика географічна подорож для підлітків у бібліотеці Ріджфілда

Чому уроки географії є ​​ключем до обізнаності про клімат